Level pinning of anti-PT-symmetric circuits for efficient wireless power transfer

Author:

Guo Zhiwei1ORCID,Yang Fengqing1,Zhang Haiyan1,Wu Xian1,Wu Qiong1,Zhu Kejia2,Jiang Jun3,Jiang Haitao1,Yang Yaping1,Li Yunhui2,Chen Hong1

Affiliation:

1. MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Sciences and Engineering, Tongji University , Shanghai 200092 , China

2. Department of Electrical Engineering, Tongji University , Shanghai 201804 , China

3. School of Automotive Studies, Tongji University , Shanghai 210804 , China

Abstract

ABSTRACT Wireless power transfer (WPT) technology based on magnetic resonance (a basic physical phenomenon) can directly transfer energy from the source to the load without wires and other physical contacts, and has been successfully applied to implantable medical devices, electric vehicles, robotic arms and other fields. However, due to the frequency splitting of near-field coupling, the resonant WPT system has some unique limitations, such as poor transmission stability and low efficiency. Here, we propose anti-resonance with level pinning for high-performance WPT. By introducing the anti-resonance mode into the basic WPT platform, we uncover the competition between dissipative coupling and coherent coupling to achieve novel level pinning, and construct an effective anti-parity-time (anti-PT)-symmetric non-Hermitian system that is superior to previous PT-symmetric WPT schemes. On the one hand, the eigenvalue of the anti-PT-symmetric system at resonance frequency is always pure real in both strong and weak coupling regions, and can be used to overcome the transmission efficiency decrease caused by weak coupling, as brought about by, for example, a large size ratio of the transmitter to receiver, or a long transmission distance. On the other hand, due to the level pinning effect of the two kinds of coupling mechanisms, the working frequency of the system is guaranteed to be locked, so frequency tracking is not required when the position and size of the receiver change. Even if the system deviates from the matching condition, an efficient WPT can be realized, thereby demonstrating the robustness of the level pinning. The experimental results show that when the size ratio of the transmitter coil to the receiver coil is 4.29 (which is in the weak coupling region), the transfer efficiency of the anti-PT-symmetric system is nearly 4.3 (3.2) times higher than that of the PT-symmetric system when the matching conditions are satisfied (deviated). With the miniaturization and integration of devices in mind, a synthetic anti-PT-symmetric system is used to realize a robust WPT. Anti-PT-symmetric WPT technology based on the synthetic dimension not only provides a good research platform for the study of abundant non-Hermitian physics, but also provides a means of going beyond traditional near-field applications with resonance mechanisms, such as resonance imaging, wireless sensing and photonic routing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Shanghai Chenguang Plan

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Reference62 articles.

1. The transmission of electrical energy without wires;Tesla;Electrical World and Engineer,1904

2. Apparatus for transmitting electric energy;Tesla;United States Patent,1914

3. An inductive power transfer system with a high-Q resonant tank for mobile device charging;Li;IEEE Trans Power Electron,2015

4. Omnidirectional and efficient wireless power transfer system for logistic robots;Zhang;IEEE Access,2020

5. Miniaturizing wireless implants;Mei;Nat Biotechnol,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3