Brain developmental and cortical connectivity changes in transgenic monkeys carrying the human-specific duplicated gene SRGAP2C

Author:

Meng Xiaoyu123,Lin Qiang1,Zeng Xuerui123,Jiang Jin1,Li Min1,Luo Xin12,Chen Kaimin123,Wu Haixu123,Hu Yan1,Liu Cirong4,Su Bing125ORCID

Affiliation:

1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223 , China

2. National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650107 , China

3. Kunming College of Life Science, University of Chinese Academy of Sciences , Beijing 100101 , China

4. Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences , Shanghai 200031 , China

5. Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences , Kunming 650223 , China

Abstract

ABSTRACT Human-specific duplicated genes contributed to phenotypic innovations during the origin of our own species, such as an enlarged brain and highly developed cognitive abilities. While prior studies on transgenic mice carrying the human-specific SRGAP2C gene have shown enhanced brain connectivity, the relevance to humans remains unclear due to the significant evolutionary gap between humans and rodents. In this study, to investigate the phenotypic outcome and underlying genetic mechanism of SRGAP2C, we generated transgenic cynomolgus macaques (Macaca fascicularis) carrying the human-specific SRGAP2C gene. Longitudinal MRI imaging revealed delayed brain development with region-specific volume changes, accompanied by altered myelination levels in the temporal and occipital regions. On a cellular level, the transgenic monkeys exhibited increased deep-layer neurons during fetal neurogenesis and delayed synaptic maturation in adolescence. Moreover, transcriptome analysis detected neotenic expression in molecular pathways related to neuron ensheathment, synaptic connections, extracellular matrix and energy metabolism. Cognitively, the transgenic monkeys demonstrated improved motor planning and execution skills. Together, our findings provide new insights into the mechanisms by which the newly evolved gene shapes the unique development and circuitry of the human brain.

Funder

National Natural Science Foundation of China

Yunnan Provincial Science and Technology Department

Youth Innovation Promotion Association of Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3