Graphene-confined ultrafast radiant heating for high-loading subnanometer metal cluster catalysts

Author:

Han Ye-Chuang12,Yi Jun12,Pang Beibei3,Wang Ning4,Li Xu-Cheng12,Yao Tao3,Novoselov Kostya S15ORCID,Tian Zhong-Qun12

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, School of Electronic Science and Engineering, Xiamen University , Xiamen 361005 , China

2. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) , Xiamen 361005 , China

3. National Synchrotron Radiation Laboratory, University of Science and Technology of China , Hefei 230029 , China

4. Faculty of Environment and Life, Beijing University of Technology , Beijing 100124 , China

5. Institute for Functional Intelligent Materials, National University of Singapore , Singapore 117544 , Singapore

Abstract

ABSTRACT Thermally activated ultrafast diffusion, collision and combination of metal atoms comprise the fundamental processes of synthesizing burgeoning subnanometer metal clusters for diverse applications. However, so far, no method has allowed the kinetically controllable synthesis of subnanometer metal clusters without compromising metal loading. Herein, we have developed, for the first time, a graphene-confined ultrafast radiant heating (GCURH) method for the synthesis of high-loading metal cluster catalysts in microseconds, where the impermeable and flexible graphene acts as a diffusion-constrained nanoreactor for high-temperature reactions. Originating from graphene-mediated ultrafast and efficient laser-to-thermal conversion, the GCURH method is capable of providing a record-high heating and cooling rate of ∼109°C/s and a peak temperature above 2000°C, and the diffusion of thermally activated atoms is spatially limited within the confinement of the graphene nanoreactor. As a result, due to the kinetics-dominant and diffusion-constrained condition provided by GCURH, subnanometer Co cluster catalysts with high metal loading up to 27.1 wt% have been synthesized by pyrolyzing a Co-based metal-organic framework (MOF) in microseconds, representing one of the highest size-loading combinations and the quickest rate for MOF pyrolysis in the reported literature. The obtained Co cluster catalyst not only exhibits an extraordinary activity similar to that of most modern multicomponent noble metal counterparts in the electrocatalytic oxygen evolution reaction, but is also highly convenient for catalyst recycling and refining due to its single metal component. Such a novel GCURH technique paves the way for the kinetically regulated, limited diffusion distance of thermally activated atoms, which in turn provides enormous opportunities for the development of sophisticated and environmentally sustainable metal cluster catalysts.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3