Tunable quantum anomalous Hall effects in ferromagnetic van der Waals heterostructures

Author:

Xue Feng12,Hou Yusheng3,Wang Zhe4,Xu Zhiming2,He Ke125ORCID,Wu Ruqian6,Xu Yong2578ORCID,Duan Wenhui1259ORCID

Affiliation:

1. Beijing Academy of Quantum Information Sciences , Beijing 100193 , China

2. State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University , Beijing 100084 , China

3. Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University , Guangzhou 510275 , China

4. State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences, and Department of Physics, Fudan University , Shanghai 200433 , China

5. Frontier Science Center for Quantum Information , Beijing 100084 , China

6. Department of Physics and Astronomy, University of California-Irvine , Irvine , CA 92697 , USA

7. Tencent Quantum Laboratory , Tencent Technology (Shenzhen) Co. Ltd, Shenzhen 518057 , China

8. RIKEN Center for Emergent Matter Science (CEMS) , Wako , 351-0198 , Japan

9. Institute for Advanced Study, Tsinghua University , Beijing 100084 , China

Abstract

ABSTRACT The quantum anomalous Hall effect (QAHE) has unique advantages in topotronic applications, but it is still challenging to realize the QAHE with tunable magnetic and topological properties for building functional devices. Through systematic first-principles calculations, we predict that the in-plane magnetization induced QAHE with Chern numbers C = ±1 and the out-of-plane magnetization induced QAHE with high Chern numbers C = ±3 can be realized in a single material candidate, which is composed of van der Waals (vdW) coupled Bi and MnBi2Te4 monolayers. The switching between different phases of QAHE can be controlled in multiple ways, such as applying strain or (weak) magnetic field or twisting the vdW materials. The prediction of an experimentally available material system hosting robust, highly tunable QAHE will stimulate great research interest in the field. Our work opens a new avenue for the realization of tunable QAHE and provides a practical material platform for the development of topological electronics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Beijing Advanced Innovation Center for Future Chip

Department of Energy-Basic Energy Sciences of the USA

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3