ARPES investigation of the electronic structure and its evolution in magnetic topological insulator MnBi2+2nTe4+3n family

Author:

Xu Runzhe1,Xu Lixuan12,Liu Zhongkai23,Yang Lexian145,Chen Yulin236

Affiliation:

1. State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University , Beijing 100084 , China

2. School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center , Shanghai 201210 , China

3. ShanghaiTech Laboratory for Topological Physics , Shanghai 200031 , China

4. Frontier Science Center for Quantum Information , Beijing 100084 , China

5. Collaborative Innovation Center of Quantum Matter , Beijing 100871 , China

6. Department of Physics, Clarendon Laboratory, University of Oxford , Parks Road, Oxford OX1 3PU, UK

Abstract

ABSTRACT In the past 5 years, there has been significant research interest in the intrinsic magnetic topological insulator family compounds MnBi2+2nTe4+3n (where n = 0, 1, 2 …). In particular, exfoliated thin films of MnBi2Te4 have led to numerous experimental breakthroughs, such as the quantum anomalous Hall effect, axion insulator phase and high-Chern number quantum Hall effect without Landau levels. However, despite extensive efforts, the energy gap of the topological surface states due to exchange magnetic coupling, which is a key feature of the characteristic band structure of the system, remains experimentally elusive. The electronic structure measured by using angle-resolved photoemission (ARPES) shows significant deviation from ab initio prediction and scanning tunneling spectroscopy measurements, making it challenging to understand the transport results based on the electronic structure. This paper reviews the measurements of the band structure of MnBi2+2nTe4+3n magnetic topological insulators using ARPES, focusing on the evolution of their electronic structures with temperature, surface and bulk doping and film thickness. The aim of the review is to construct a unified picture of the electronic structure of MnBi2+2nTe4+3n compounds and explore possible control of their topological properties.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Shanghai Municipal Science and Technology Major Project

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3