Effects of edge cracks on the thermomagnetic instabilities of type-II superconducting thin films

Author:

Jing Ze1

Affiliation:

1. Institute of Extreme Mechanics and School of Aeronautics, Northwestern Polytechnical University , Xi’an 710072 , China

Abstract

ABSTRACTThermomagnetic instability is a crucial issue for the application of superconductors. Effects of edge cracks on the thermomagnetic instability of superconducting thin films are systematically investigated in this work. Dendritic flux avalanches in thin films are well reproduced through electrodynamics simulations, and relevant physical mechanisms are revealed from dissipative vortex dynamics simulations. It is found that edge cracks sharply decrease the threshold field for the thermomagnetic instability of superconducting films. Spectrum analysis shows that the time series of magnetization jumping displays scale-invariance and follows a power law with an exponent around 1.9. In a cracked film, flux jumps more frequently with lower amplitudes compared with its crack-less counterpart. As the crack extends, the threshold field decreases, the jumping frequency gets lower, while its magnitude gets larger. When the crack has extended long enough, the threshold field increases to even larger than that of the crack-less film. This counterintuitive result originates from the transition of the thermomagnetic instability triggered at the crack tip to the one triggered at the center of the crack edges, which is validated by the multifractal spectrum of magnetization jumping sequences. In addition, with the variation of crack lengths, three different modes of vortex motion are found, which explains the different flux patterns formed in the avalanche process.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Association for Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3