First finding of continental deep subduction in the Sesia Zone of the Western Alps and implications for subduction dynamics

Author:

Chen Yi-Xiang12,Zhou Kun1,He Qiang1,Zheng Yong-Fei12ORCID,Schertl Hans-Peter3,Chen Kun1

Affiliation:

1. CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China , Hefei 230026 , China

2. Center of Excellence for Comparative Planetology, Chinese Academy of Sciences , Hefei 230026 , China

3. Institute of Geology, Mineralogy and Geophysics, Faculty of Geosciences, Ruhr University Bochum , Bochum 44780 , Germany

Abstract

ABSTRACTContinental deep subduction after the closure of large oceanic basins is commonly ascribed to the gravitational pull of the subducting oceanic slab. However, it is not clear how continental lithosphere adjacent to small oceanic basins was subducted to mantle depths. The Sesia Zone in the Western Alps provides an excellent target for exploration of subduction dynamics in such a tectonic setting. Here we report the first finding of coesite in a jadeite-bearing orthogneiss from the Sesia Zone, providing the first evidence for deep subduction of the continental crust to mantle depths for ultrahigh-pressure (UHP) metamorphism in this zone. Three coesite inclusions were identified by laser Raman spectroscopy in two garnet grains. Based on zircon U-Pb dating and trace element analysis, the UHP metamorphic age was constrained to be 76.0 ± 1.0 Ma. The phase equilibrium modeling yields peak metamorphic pressures of 2.8–3.3 GPa, demonstrating the continental deep subduction to mantle depths of >80 km. The subducted continental crust was a rifted hyperextended continental margin, which was converted to the passive continental margin during seafloor spreading and then deeply subducted during the oblique convergence between the Adria microplate and Eurasian plate in the Late Cretaceous. Because the slab pull could only play a limited role in closing small oceanic basins for continental collision, the distal push of either continental breakup or seafloor spreading is suggested as the major driving force for the deep subduction of continental crust in the Western Alps. Therefore, deep subduction of the continental crust bordering small oceanic basins would have been induced by the far-field stress of compression, whereas that bordering large oceanic basins was spontaneous due to the oceanic slab pull. This provides a new insight into the geodynamic mechanism of continental deep subduction.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3