Advancements in MR hardware systems and magnetic field control: B0 shimming, RF coils, and gradient techniques for enhancing magnetic resonance imaging and spectroscopy

Author:

Shang Yun1ORCID,Simegn Gizeaddis Lamesgin23,Gillen Kelly1,Yang Hsin-Jung4,Han Hui1

Affiliation:

1. Department of Radiology, Weill Medical College of Cornell University , New York, NY 10065 , United States

2. Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, MD 21205 , United States

3. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute , Baltimore, MD 21205 , United States

4. Department of Biomedical Sciences, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute , Los Angeles, CA 90048 , United States

Abstract

Abstract High magnetic field homogeneity is critical for magnetic resonance imaging (MRI), functional MRI, and magnetic resonance spectroscopy (MRS) applications. B0 inhomogeneity during MR scans is a long-standing problem resulting from magnet imperfections and site conditions, with the main issue being the inhomogeneity across the human body caused by differences in magnetic susceptibilities between tissues, resulting in signal loss, image distortion, and poor spectral resolution. Through a combination of passive and active shim techniques, as well as technological advances employing multi-coil techniques, optimal coil design, motion tracking, and real-time modifications, improved field homogeneity and image quality have been achieved in MRI/MRS. The integration of RF and shim coils brings a high shim efficiency due to the proximity of participants. This technique will potentially be applied to high-density RF coils with a high-density shim array for improved B0 homogeneity. Simultaneous shimming and image encoding can be achieved using multi-coil array, which also enables the development of novel encoding methods using advanced magnetic field control. Field monitoring enables the capture and real-time compensation for dynamic field perturbance beyond the static background inhomogeneity. These advancements have the potential to better use the scanner performance to enhance diagnostic capabilities and broaden applications of MRI/MRS in a variety of clinical and research settings. The purpose of this paper is to provide an overview of the latest advances in B0 magnetic field shimming and magnetic field control techniques as well as MR hardware, and to emphasize their significance and potential impact on improving the data quality of MRI/MRS.

Funder

National Institute of Neurological Disorders and Stroke

National Institutes of Health

SBIR

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3