Plasticity in the growth habit prolongs survival at no physiological cost in a monocarpic perennial at high altitudes

Author:

Cotado Alba12,Munné-Bosch Sergi12

Affiliation:

1. Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain

2. Institut de Recerca de la Biodiversitat, University of Barcelona, Barcelona, Spain

Abstract

Abstract Background and Aims Monocarpic plants are those that flower, produce seeds and then die. Although most monocarpic plants are annual or biennial, some of them are perennial. However, relatively little is known regarding the biology of monocarpic perennials. Pyrenean saxifrage (Saxifraga longifolia) is a monocarpic perennial that is well adapted to high-mountain ecosystems. Here, we evaluated altitudinal changes in clonality in various populations growing in their natural habitat with particular emphasis on the physiological costs of clonal growth. Methods We assessed the percentage of clonal plants in nine populations growing in their natural habitat, as well as the plant stress response of clonal and non-clonal plants, in terms of photoprotection and accumulation of stress-related phytohormones, in a 3-year study at Las Blancas (2100 m a.s.l.). We also evaluated the influence of plant size on the activation of defensive responses to biotic and abiotic stresses. Key Results We found that 12 % of Pyrenean saxifrage plants growing at the highest altitudes (2100 m a.s.l.) produced lateral rosettes which survived the flowering of the main rosette and shared the same axonomorphic root, thus escaping monocarpic senescence. This clonal growth did not worsen the physiological performance of plants growing at this altitude. Furthermore, increased plant size did not negatively affect the physiology of plants, despite adjustments in endogenous stress-related phytohormones. In contrast, maturity led to rapid physiological deterioration of the rosette, which was associated with monocarpic senescence. Conclusions This study shows that the evolution of clonality has allowed Pyrenean saxifrage to survive harsh environmental conditions and it provides evidence that harsh environments push plant species to their limits in terms of life form and longevity.

Funder

Spanish Government

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3