Deep forest

Author:

Zhou Zhi-Hua1,Feng Ji1

Affiliation:

1. National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Abstract

Abstract Current deep-learning models are mostly built upon neural networks, i.e. multiple layers of parameterized differentiable non-linear modules that can be trained by backpropagation. In this paper, we explore the possibility of building deep models based on non-differentiable modules such as decision trees. After a discussion about the mystery behind deep neural networks, particularly by contrasting them with shallow neural networks and traditional machine-learning techniques such as decision trees and boosting machines, we conjecture that the success of deep neural networks owes much to three characteristics, i.e. layer-by-layer processing, in-model feature transformation and sufficient model complexity. On one hand, our conjecture may offer inspiration for theoretical understanding of deep learning; on the other hand, to verify the conjecture, we propose an approach that generates deep forest holding these characteristics. This is a decision-tree ensemble approach, with fewer hyper-parameters than deep neural networks, and its model complexity can be automatically determined in a data-dependent way. Experiments show that its performance is quite robust to hyper-parameter settings, such that in most cases, even across different data from different domains, it is able to achieve excellent performance by using the same default setting. This study opens the door to deep learning based on non-differentiable modules without gradient-based adjustment, and exhibits the possibility of constructing deep models without backpropagation.

Funder

National Natural Science Foundation of China

Collaborative Innovation Center of Novel Software Technology and Industrialization

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Reference55 articles.

1. Deep learning models in finance;Sirignano;SIAM News,2017

2. Gradient-based learning applied to document recognition;LeCun;Proc IEEE,1998

3. ImageNet classification with deep convolutional neural networks;Krizhenvsky,2012

4. Very deep convolutional networks for large-scale image recognition;Simonyan

Cited by 386 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3