Pilot clinical study of ascorbic acid treatment in cardiac catheterization

Author:

Sun Lue123ORCID,Igarashi Tomonori45,Tetsuka Ryoya6,Li Yun-Shan7,Kawasaki Yuya7,Kawai Kazuaki7,Hirakawa Haruhisa8,Tsuboi Koji2,Nakamura Asako J6,Moritake Takashi3ORCID

Affiliation:

1. Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan

2. Department of Radiation Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan

3. Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan

4. Iwamoto Hospital, 1-2-8 Shimoishida, Kokuraminami-ku Kitakyushu, Fukuoka, Japan

5. Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan

6. Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan

7. Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan

8. Department of Cardiology, Social Insurance Nogata Hospital, 1-1 Susakimachi, Nogata, Fukuoka, Japan

Abstract

AbstractClinical radiodiagnosis and radiotherapy sometimes induce tissue damage and/or increase the risk of cancer in patients. However, in radiodiagnosis, a reduction in the exposure dose causes a blockier image that is not acceptable for diagnosis. Approximately 70% of DNA damage is induced via reactive oxygen species and/or radicals created during X-ray irradiation. Therefore, treatment with anti-oxidants and/or radical scavengers is considered to be effective in achieving a good balance between image quality and damage. However, few studies have examined the effect of using radical scavengers to reduce radiation damage in the clinical setting. In this study, we administrated 20 mg/kg ascorbic acid (AA) to patients before cardiac catheterization (CC) for diagnostic purposes. We analyzed changes in the number of phosphorylated H2AX (γH2AX) foci (a marker of DNA double-strand breaks) in lymphocytes, red blood cell glutathione levels, blood cell counts, and biochemical parameters. Unfortunately, we did not find satisfactory evidence to show that AA treatment reduces γH2AX foci formation immediately after CC. AA treatment did, however, cause a higher reduced/oxidized glutathione ratio than in the control arm immediately after CC. This is a preliminary study, but this result suggests that reducing radiation damage in clinical practice can be achieved using a biological approach.

Funder

Japanese Ministry of Health, Labour and Welfare

Jyuten Research Funding

University of Occupational and Environmental Health

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology Nuclear Medicine and imaging,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Space Radiation Biology for “Living in Space”;BioMed Research International;2020-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3