The effects of 50 Hz magnetic field–exposed cell culture medium on cellular functions in FL cells

Author:

Fei Yue1,Su Liling12,Lou Haifeng1ORCID,Zhao Chuning1,Wang Yiqin3,Chen Guangdi1

Affiliation:

1. Bioelectromagnetics Laboratory, and Department of Reproductive Endocrinology of Women’s Hospital, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, China

2. Department of Clinical Medicine, Jiangxi Medical College, Zhimin Road, Shangrao, China

3. State Key Laboratory of Modern Optical Instrumentation (Zhejiang University), Centre for Optical and Electromagnetics Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, JORCEP (Sino-Swedish Joint Research Center of Photonics), Zhejiang University, 866 Yuhangtang Road, Hangzhou, China

Abstract

Abstract Although extremely low frequency magnetic fields (ELF-MFs) have been classified as a possible carcinogen for humans by the International Agency for Research on Cancer (IARC), their biological effects and underlying mechanisms are still unclear. Our previous study indicated that ELF-MF exposure influenced the relative permittivity of the saline solution, suggesting that the MF exposure altered physical properties of the solution. To explore the biophysical mechanism of ELF-MF–induced biological effects, this study examined the effects of 50 Hz sinusoidal MF at 0–4.0 mT on the permittivity of culture medium with phase-interrogation surface plasmon resonance (SPR) sensing. Then, the biological effects of MF pre-exposed culture medium on cell viability, the mitogen-activated protein kinase (MAPK) signaling pathways, oxidative stress, and genetic stabilities were analyzed using Cell Counting Kit-8, western blot, flow cytometry, γH2AX foci formation, and comet assay. The results showed that SPR signals were decreased under MF exposure in a time- and dose-dependent manner, and the decreased SPR signals were reversible when the exposure was drawn off. However, MF pre-exposed culture medium did not significantly change cell viability, intracellular reactive oxygen species level, activation of the MARK signaling pathways, or genetic stabilities in human amniotic epithelial cells (FL cells). In conclusion, our data suggest that the relative permittivity of culture medium was influenced by 50 Hz MF exposure, but this change did not affect the biological processes in FL cells.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3