Protective effects of zingerone derivate on ionizing radiation-induced intestinal injury

Author:

Wu Jing1,Duan Yuqing1,Cui Jie12,Dong Yinping1,Li Hongyan1,Wang Meifang1,Fan Saijun1,Li Deguan1,Li Yiliang1

Affiliation:

1. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China

2. School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China

Abstract

Abstract Intestinal injury is the primary toxicity of radiotherapy for pelvic and abdominal tumors, and it is also one of the common acute complications of radiotherapy. At present, there are no effective drugs to prevent intestinal injury in the clinic. Zingerone is a natural product with radioprotective effects. In this study, a novel compound (thiazolidine hydrochloride, TZC01) was synthesized by structural modification of zingerone. The effects of TZC01 on preventing intestinal injury from radiation were further investigated in this study. C57BL/6N mice were exposed to a lethal dose of abdominal irradiation (ABI) with and without TZC01 treatments. The morphological changes of the intestine and various makers of intestinal crypt cells were investigated. Treatment with TZC01 improved the survival rate of mice exposed to 12 Gy ABI. Moreover, TZC01 protected the intestinal morphology of mice, decreased the apoptotic rate of intestinal crypt cells, maintained cell regeneration and promoted crypt cell proliferation and differentiation. This study suggests that TZC01 has preventive and therapeutic effects on radiation enteritis by promoting the proliferation and differentiation of crypt cells to protect the small intestine from the toxic effects of ionizing radiation. Furthermore, the study of TCZ01 lays a strong foundation for developing novel radioprotectors with multiple properties.

Funder

National Natural Science Foundation of China

Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology Nuclear Medicine and imaging,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3