Physical dosimetry reconstructions of significant radiation exposure at an industrial accelerator facility in Tianjin (China)

Author:

Ruan Shuzhou1,Huo Menghui1,Su Kaijun1,Liu Yulian1,Yan Changxin1,Zhang Wenyi1,Jiao Ling1

Affiliation:

1. Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, No.238 baidi road, Nankai District, Tianjin, China

Abstract

ABSTRACT The goal of this thesis is to estimate the physical radiation doses for two victims who were accidently exposed to an industrial electron beam at an industrial accelerator facility on 7 July 7 2016 in Tianjin, China. On the basis of the radiation source parameters, irradiation situation and irradiation time, physical dose reconstruction was carried out at the accident site by using a Bottle-Manikin-Absorption (BOMAB) phantom and an Alderson Radiation Therapy (ART) phantom. With thermoluminscent dosimeters (TLDs), skin estimation was conducted for the feet, calves, upper arms, left side of the body and neck, and the mean dose was estimated to be 14.1 ± 5.6 Gy. The foot and leg skin received the highest dose, which was >16.3 Gy. In addition, the mean dose estimated for the eye lens was 0.18 ± 0.07 Gy. The organ effective dose estimated and the total organs effective dose estimated were 0.46–4.94 mSv and 0.21 Sv, respectively. In the course of the accident, the damage caused by the electron radiation field to the exposed person was mainly to the skin, and the contributions to other radiation-sensitive organs were small. The damage to the organs other than the skin was mainly caused by the X-rays generated by the bremsstrahlung of the electron beam from the environment or the human body.

Funder

Tianjin Municipal Natural Science Foundation

Medical and Health Technology Innovation Project of Chinese Academy Medical Sciences

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology Nuclear Medicine and imaging,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3