The Short-Range Movement of Scirtothrips dorsalis (Thysanoptera: Thripidae) and Rate of Spread of Feeding Injury Among Strawberry Plants

Author:

Panthi Babu R12ORCID,Renkema Justin M1,Lahiri Sriyanka1ORCID,Liburd Oscar E2

Affiliation:

1. Gulf Coast Research and Education Center, University of Florida, Wimauma, FL

2. Department of Entomology and Nematology, University of Florida, Gainesville, FL

Abstract

Abstract Scirtothrips dorsalis Hood infest strawberry (Fragaria x ananassa Duchesne, Rosaceae) fields from nearby crop fields and surrounding vegetation and cause injury to plants by feeding on young leaf tissues. Greenhouse and field studies were conducted to determine the short-range movement of S. dorsalis to assess the risk of an early S. dorsalis population to spread to adjacent plants. In a greenhouse, 25 potted strawberry plants were arranged in two concentric rows around a central plant, where plants in inner rows were 20 cm, and those in the outer rows were 40 cm from the central plant. In the field, 20 strawberry plants were arranged in two beds (90 cm apart), ten in each bed, and five plants in each row, with plants 30 cm apart. White sticky cards were placed at 60–120 cm from the central plant. Fifty S. dorsalis adults were released on a centrally located plant, and the numbers of S. dorsalis adults and larvae and feeding injury were recorded for 9–17 d on adjacent plants and sticky cards. Results showed that significantly more S. dorsalis adults and larvae remained on the initially infested plant compared to adjacent plants, although few adults were found up to 120 cm on sticky cards. The rate of spread of feeding injury was low with slight bronzing injury (<10% injury) on adjacent plants by 14–17 d. Since most S. dorsalis remained on initially infested plants for at least 2 wk, it is feasible to delay management actions and ‘rescue’ plants around a plant with minor injury symptoms.

Funder

Florida Strawberry Research and Education Foundation

Florida Specialty Crop Block Grant Program

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3