Divergence in Photoperiod Responses of a Classical Biological Control Agent, Galerucella calmariensis (Coleoptera: Chrysomelidae), Across a Climatic and Latitudinal Gradient

Author:

Wepprich Tyson1ORCID,Grevstad Fritzi S1

Affiliation:

1. Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR

Abstract

Abstract A key knowledge gap in classical biological control is to what extent insect agents evolve to novel environments. The introduction of biological control agents to new photoperiod regimes and climates may disrupt the coordination of diapause timing that evolved to the growing season length in the native range. We tested whether populations of Galerucella calmariensis L. have evolved in response to the potential mismatch of their diapause timing since their intentional introduction to the United States from Germany in the 1990s. Populations collected from 39.4° to 48.8° latitude in the western United States were reared in growth chambers to isolate the effects of photoperiod on diapause induction and development time. For all populations, shorter day lengths increased the proportion of beetles that entered diapause instead of reproducing. The critical photoperiods, or the day length at which half of a population diapauses, differed significantly among the sampled populations, generally decreasing at lower latitudes. The latitudinal trend reflects changes in growing season length, which determines the number of generations possible, and in local day lengths, at the time when beetles are sensitive to this cue. Development times were similar across populations, with one exception, and did not vary with photoperiod. These results show that there was sufficient genetic variation from the two German source populations to evolve different photoperiod responses across a range of environmental conditions. This study adds to the examples of rapid evolution of seasonal adaptations in introduced insects.

Funder

U.S. Department of Defense Strategic Environmental Research and Development Program

U.S. Army Corps of Engineers

U.S. Forest Service

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3