Temperature and Humidity Interact to Influence Brown Marmorated Stink Bug (Hemiptera: Pentatomidae), Survival

Author:

Fisher Joanna J1,Rijal Jhalendra P2,Zalom Frank G1

Affiliation:

1. Department of Entomology and Nematology, University of California Davis, Davis, CA

2. UC Agriculture and Natural Resources, University of California Cooperative Extension & Statewide IPM Program, Modesto, CA

Abstract

Abstract High-temperature events can influence insect population dynamics and could be especially important for predicting the potential spread and establishment of invasive insects. The interaction between temperature and environmental humidity on insect populations is not well understood but can be a key factor that determines habitat range and population size. The brown marmorated stink bug, Halyomorpha halys (Stål), is an invasive agricultural pest in the United States and Europe, which causes serious economic damage to a wide range of crops. This insect’s range continues to expand. It has recently invaded the Central Valley of California, which has a hotter and drier climate compared with the Eastern United States where this insect is established. We investigated how high-temperature events and relative humidity would impact the survival and reproduction of H. halys. Using incubators and humidity chambers, we evaluated the impact of humidity and short-term (2 d) high-temperature exposure on the survival and development of H. halys eggs, nymphs, and adults. We found that high temperatures significantly reduced H. halys survival. The impact of humidity on H. halys survival was dependent on temperature and life stage. Low humidity decreased first-instar survival but not third- to fourth-instar survival. High humidity increased first instar survival but decreased third- to fourth-instar survival. Humidity did not influence adult or egg survival. We also found that high temperatures decreased H. halys reproduction. Our findings have important implications for understanding the invasive ecology of H. halys and may be used to improve models predicting H. halys range expansion.

Funder

U.S. Department of Agriculture

National Institute of Food and Agriculture

Specialty Crop Research Initiative

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3