A Phenology Model for Simulating Oobius agrili (Hymenoptera: Encyrtidae) Seasonal Voltinism and Synchrony With Emerald Ash Borer Oviposition

Author:

Petrice Toby R12ORCID,Bauer Leah S12,Miller Deborah L1,Poland Therese M12,Ravlin F William2

Affiliation:

1. USDA Forest Service, Northern Research Station, Lansing, MI

2. Department of Entomology, Michigan State University, East Lansing, MI

Abstract

Abstract In North America, the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), continues to spread, and its egg parasitoid, Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae), is being released for emerald ash borer biocontrol well beyond their endemic climatic ranges in China. We developed a multiple cohort rate summation model to simulate O. agrili F0, F1, and F2 generations, and emerald ash borer oviposition for examining host–parasitoid synchrony across a north–south gradient from Duluth, MN (latitude 46.8369, longitude −92.1833) to Shreveport, LA (latitude 32.4469, longitude −93.8242). Temporal occurrences of critical day length for O. agrili diapause induction were integrated into the model. We used O. agrili and emerald ash borer trapping data from south central and northwestern Lower Michigan for model validation. Simulations demonstrated that 1) F0 adult emergence consistently occurred 2–5 d before emerald ash borer oviposition began; 2) F1 adult emergence was most synchronized with peak emerald ash borer oviposition compared with other generations; and 3) emerald ash borer oviposition was complete, or near so, when F2 adult emergence was predicted across the north–south gradient. Comparison of O. agrili trap captures with model simulations demonstrated that primarily two adult O. agrili generations (F0 and F1) emerged per year in Michigan and almost all F2 larvae entered diapause despite day lengths longer than critical day length in south central Michigan. Critical day length varied temporally across the north–south gradient during emergence of O. agrili generations. Determining day lengths perceived by O. agrili larvae in the field should improve model realism for examining spatiotemporal variation in O. agrili population dynamics.

Funder

USDA Forest Service and Michigan State University

AgBioResearch, Michigan State University

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3