A Version of the Berglund–Hübsch–Henningson Duality With Non-Abelian Groups

Author:

Ebeling Wolfgang1,Gusein-Zade Sabir M2

Affiliation:

1. Leibniz Universität Hannover, Institut für Algebraische Geometrie, Postfach 6009, D-30060 Hannover, Germany

2. Faculty of Mechanics and Mathematics, Moscow State University, Moscow, GSP-1, 119991, Russia

Abstract

Abstract A. Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a “non-abelian” generalization of the statement about the equivariant Saito duality property for invertible polynomials. It turns out that the statement holds only under a special condition on the action of the subgroup of the permutation group called here PC (“parity condition”). An inspection of data on Calabi–Yau three-folds obtained from quotients by non-abelian groups shows that the pairs found on the basis of the method of Takahashi have symmetric pairs of Hodge numbers if and only if they satisfy PC.

Funder

German Research Foundation

Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference15 articles.

1. Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus;Berglund;Nuclear Phys. B,1995

2. A generalized construction of mirror manifolds;Berglund;Nuclear Phys. B,1993

3. LG/CY correspondence: the state space isomorphism;Chiodo;Adv. Math.,2011

4. Orbifold Euler characteristics for dual invertible polynomials;Ebeling;Mosc. Math. J.,2012

5. Saito duality between Burnside rings for invertible polynomials;Ebeling;Bull. Lond. Math. Soc.,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mirror map for Landau-Ginzburg models with nonabelian groups;Journal of Geometry and Physics;2024-05

2. Hodge Diamonds of the Landau-Ginzburg Orbifolds;Symmetry, Integrability and Geometry: Methods and Applications;2024-03-25

3. Mirror symmetry on levels of non-abelian Landau–Ginzburg orbifolds;Journal of Geometry and Physics;2022-09

4. Mirror map for Fermat polynomials with a nonabelian group of symmetries;Theoretical and Mathematical Physics;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3