Extremal Domains and Pólya-type Inequalities for the Robin Laplacian on Rectangles and Unions of Rectangles

Author:

Freitas Pedro12,Kennedy James B2

Affiliation:

1. Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, P-1049-001 Lisboa, Portugal

2. Grupo de Física Matemática, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C6, P-1749-016 Lisboa, Portugal

Abstract

Abstract We investigate the question of whether the eigenvalues of the Laplacian with Robin boundary conditions can satisfy inequalities of the same type as those in Pólya’s conjecture for the Dirichlet and Neumann Laplacians and, if so, what form these inequalities should take. Motivated in part by Pólya’s original approach and in part by recent analogous works treating the Dirichlet and Neumann Laplacians, we consider rectangles and unions of rectangles and show that for these two families of domains, for any fixed positive value $\alpha$ of the boundary parameter, Pólya-type inequalities do indeed hold, albeit with an exponent smaller than that of the corresponding Weyl asympotics for a fixed domain. We determine the optimal exponents in both cases, showing that they are different in the two situations. Our approach to proving these results includes a characterization of the corresponding extremal domains for the $k^{\textrm{}}$th eigenvalue in regions of the $(k,\alpha )$-plane, which in turn supports recent conjectures on the nature of the extrema among all bounded domains.

Funder

Fundação para a Ciência e a Tecnologia, Portugal

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference33 articles.

1. Non-concavity of Robin eigenfunctions;Andrews,2017

2. Optimisation of eigenvalues of the Dirichlet Laplacian with a surface area restriction;Antunes;Appl. Math. Optim.,2016

3. Optimal spectral rectangles and lattice ellipses;Antunes;Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,2013

4. Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin Laplacian;Antunes;ESAIM Control Optim. Calc. Var.,2013

5. Maximal spectral surfaces of revolution converge to a catenoid;Ariturk;Proc. A,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3