Uniformizing the Moduli Stacks of Global G-Shtukas

Author:

Arasteh Rad E1,Hartl Urs1

Affiliation:

1. Universität Münster Mathematisches Institut Einsteinstr. 62 D-48149 Münster, Germany

Abstract

Abstract This is the 2nd in a sequence of articles, in which we explore moduli stacks of global $\mathfrak{G}$-shtukas, the function field analogs for Shimura varieties. Here $\mathfrak{G}$ is a flat affine group scheme of finite type over a smooth projective curve $C$ over a finite field. Global $\mathfrak{G}$-shtukas are generalizations of Drinfeld shtukas and analogs of abelian varieties with additional structure. We prove that the moduli stacks of global $\mathfrak{G}$-shtukas are algebraic Deligne–Mumford stacks separated and locally of finite type. They generalize various moduli spaces used by different authors to prove instances of the Langlands program over function fields. In the 1st article we explained the relation between global $\mathfrak{G}$-shtukas and local ${{\mathbb{P}}}$-shtukas, which are the function field analogs of $p$-divisible groups. Here ${{\mathbb{P}}}$ is the base change of $\mathfrak{G}$ to the complete local ring at a point of $C$. When ${{\mathbb{P}}}$ is smooth with connected reductive generic fiber we proved the existence of Rapoport–Zink spaces for local ${{\mathbb{P}}}$-shtukas. In the present article we use these spaces to (partly) uniformize the moduli stacks of global $\mathfrak{G}$-shtukas for smooth $\mathfrak{G}$ with connected fibers and reductive generic fiber. This is our main result. It has applications to the analog of the Langlands–Rapoport conjecture for our moduli stacks.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference67 articles.

1. Adequate moduli spaces and geometrically reductive group schemes;Alper;Algebr. Geom.,2014

2. Compactifying the Picard scheme;Altman;Adv. Math.,1980

3. Schémas en groupes, espaces homogènes et espaces algébriques Sur Une base de dimension 1;Anantharaman;Bull. Soc. Math. France Mem.,1973

4. Local $\mathbb{P}$-shtukas and their relation to global $\mathfrak{G}$-shtukas;Arasteh Rad;Muenster J. Math.,2014

5. Local models for the moduli stacks of global $\mathfrak{G}$-Shtukas;Arasteh Rad,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integral Models of Moduli Spaces of Shtukas with Deep Bruhat-Tits Level Structures;International Mathematics Research Notices;2024-05-10

2. Néron blowups and low-degree cohomological applications;Algebraic Geometry;2023-11-01

3. Category of C-motives over finite fields;Journal of Number Theory;2022-03

4. Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale;Journal of the American Mathematical Society;2018-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3