Multiplicity One for Pairs of Prasad–Takloo-Bighash Type

Author:

Broussous Paul1,Matringe Nadir2

Affiliation:

1. University of Poitiers, LMA

2. Université de Poitiers, Laboratoire de Mathématiques et Applications, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962, Futuroscope Chasseneuil, Cedex, France

Abstract

Abstract Let ${\textrm{E}}/{\textrm{F}}$ be a quadratic extension of non-archimedean local fields of characteristic different from $2$. Let ${\textrm{A}}$ be an ${\textrm{F}}$-central simple algebra of even dimension so that it contains ${\textrm{E}}$ as a subfield, set ${\textrm{G}}={\textrm{A}}^\times $ and ${\textrm{H}}$ for the centralizer of ${\textrm{E}}^\times $ in ${\textrm{G}}$. Using a Galois descent argument, we prove that all double cosets ${\textrm{H}} g {\textrm{H}}\subset{\textrm{G}}$ are stable under the anti-involution $g\mapsto g^{-1}$, reducing to Guo’s result for ${\textrm{F}}$-split ${\textrm{G}}$ [ 14], which we extend to fields of positive characteristic different from $2$. We then show, combining global and local results, that ${\textrm{H}}$-distinguished irreducible representations of ${\textrm{G}}$ are self-dual and this implies that $({\textrm{G}},{\textrm{H}})$ is a Gelfand pair $$\begin{equation*}\operatorname{dim}_{\mathbb{C}}(\operatorname{Hom}_{{\textrm{H}}}(\pi,\mathbb{C}))\leq 1\end{equation*}$$for all smooth irreducible representations $\pi $ of ${\textrm{G}}$. Finally we explain how to obtain the multiplicity one statement in the archimedean case using the criteria of Aizenbud and Gourevitch ([ 1]), and we then show self-duality of irreducible distinguished representations in the archimedean case too.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference32 articles.

1. Generalized Harish–Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet–Rallis’s theorem;Aizenbud;Duke Math. J.,2009

2. $\left (\ {\textrm{GL}}\_{n+1}(F),{\textrm{GL}}\_n(F)\right )$ is a Gelfand pair for any local field $F$,2008

3. Correspondance de Jacquet–Langlands pour les corps locaux de caractéristique non nulle;Alexandru Ioan Badulescu;Ann. Sci. École Norm. Sup. (4),2002

4. Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations;Badulescu;Invent. Math.,2008

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On local intertwining periods;Journal of Functional Analysis;2024-02

2. Epsilon Dichotomy for Linear Models: The Archimedean Case;International Mathematics Research Notices;2023-06-01

3. Linear intertwining periods and epsilon dichotomy for linear models;Mathematische Annalen;2023-04-09

4. The split case of the Prasad–Takloo-Bighash conjecture for cuspidal representations of level zero;Annales de l'Institut Fourier;2022-07-01

5. MULTIPLICITY ONE FOR THE PAIR (GLn(D);GLn(E));Transformation Groups;2022-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3