Splittings and Symbolic Powers of Square-free Monomial Ideals

Author:

Montaño Jonathan1,Núñez-Betancourt Luis2

Affiliation:

1. Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM, USA

2. Centro de Investigación en Matemáticas Guanajuato, Gto, México

Abstract

Abstract We study the symbolic powers of square-free monomial ideals via symbolic Rees algebras and methods in prime characteristic. In particular, we prove that the symbolic Rees algebra and the symbolic associated graded algebra are split with respect to a morphism that resembles the Frobenius map and that exists in all characteristics. Using these methods, we recover a result by Hoa and Trung that states that the normalized $a$-invariants and the Castelnuovo–Mumford regularity of the symbolic powers converge. In addition, we give a sufficient condition for the equality of the ordinary and symbolic powers of this family of ideals and relate it to Conforti–Cornuéjols conjecture. Finally, we interpret this condition in the context of linear optimization.

Funder

American Mathematical Society

Simons Foundation

National Science Foundation

CONACYT

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference37 articles.

1. Finite checkability for integer rounding properties in combinatorial programming problems;Baum;Math. Program.,1982

2. The Waldschmidt constant for squarefree monomial ideals;Bocci;J. Algebraic Combin.,2016

3. Cambridge Studies in Advanced Mathematics;Brodmann,1998

4. On multigraded resolutions;Bruns;Math. Proc. Cambridge Philos. Soc.,1995

5. A decomposition theorem for balanced matrices;Cornuéjols;Integer Programming and Combinatorial Optimization,1990

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of symbolic and ordinary powers of parity binomial edge ideals;Monatshefte für Mathematik;2023-11-02

2. Frobenius methods in combinatorics;São Paulo Journal of Mathematical Sciences;2022-09-13

3. Rees algebras of filtrations of covering polyhedra and integral closure of powers of monomial ideals;Research in the Mathematical Sciences;2022-01-25

4. Limit behavior of the rational powers of monomial ideals;Journal of Algebra and Its Applications;2021-12-23

5. Consequences of the packing problem;Journal of Algebraic Combinatorics;2021-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3