On a Class of Kato Manifolds

Author:

Istrati Nicolina1,Otiman Alexandra234,Pontecorvo Massimiliano2

Affiliation:

1. School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

2. Roma Tre University, Department of Mathematics, Largo S.L. Murialdo 1, 00154 Rome, Italy

3. Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21, Calea Grivitei 010702, Bucharest, Romania

4. University of Bucharest, Research Center in Geometry, Topology and Algebra, Faculty of Mathematics and Computer Science, 14 Academiei Str. 70109, Bucharest, Romania

Abstract

Abstract We revisit Brunella’s proof of the fact that Kato surfaces admit locally conformally Kähler metrics, and we show that it holds for a large class of higher-dimensional complex manifolds containing a global spherical shell. On the other hand, we construct manifolds containing a global spherical shell that admit no locally conformally Kähler metric. We consider a specific class of these manifolds, which can be seen as a higher-dimensional analogue of Inoue–Hirzebruch surfaces, and study several of their analytical properties. In particular, we give new examples, in any complex dimension $n \geq 3$, of compact non-exact locally conformally Kähler manifolds with algebraic dimension $n-2$, algebraic reduction bimeromorphic to $\mathbb{C}\mathbb{P}^{n-2}$, and admitting nontrivial holomorphic vector fields.

Funder

ISF

Ministero dell’Istruzione, dell’Università e della Ricerca

GNSAGA

Romanian Ministry of Research and Innovation

CNCS - UEFISCDI

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference33 articles.

1. Locally conformally Kähler metrics on certain non-Kählerian surfaces;Brunella;Math. Ann.,2010

2. Locally conformally Kähler metrics on Kato surfaces;Brunella;Nagoya Math. J.,2011

3. On the blow-up formula of twisted de Rham cohomology;Chen;Ann. Glob. Anal. Geom.,2019

4. Structure des surfaces de Kato;Dloussky;Mém. Soc. Math. France (N.S.),1984

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lee classes on LCK manifolds with potential;Tohoku Mathematical Journal;2024-03-01

2. Do products of compact complex manifolds admit LCK metrics?;Bulletin of the London Mathematical Society;2023-11-30

3. Bimeromorphic geometry of LCK manifolds;Proceedings of the American Mathematical Society;2023-11-29

4. Toric Kato manifolds;Journal de l’École polytechnique — Mathématiques;2022-09-08

5. Supersymmetry and Hodge theory on Sasakian and Vaisman manifolds;manuscripta mathematica;2022-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3