Smooth Compactness for Spaces of Asymptotically Conical Self-Expanders of Mean Curvature Flow

Author:

Bernstein Jacob1,Wang Lu2

Affiliation:

1. Department of Mathematics, Johns Hopkins University, N. Charles Street, Baltimore, MD, USA

2. Department of Mathematics, University of Wisconsin-Madison, Lincoln Drive, Madison, WI, USA

Abstract

Abstract We show compactness in the locally smooth topology for certain natural families of asymptotically conical self-expanding solutions of mean curvature flow. Specifically, we show such compactness for the set of all 2D self-expanders of a fixed topological type and, in all dimensions, for the set of self-expanders of low entropy and for the set of mean convex self-expanders with strictly mean convex asymptotic cones. From this we deduce that the natural projection map from the space of parameterizations of asymptotically conical self-expanders to the space of parameterizations of the asymptotic cones is proper for these classes.

Funder

National Science Foundation

Alfred P. Sloan Foundation

Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin-Madison

Wisconsin Alumni Research Foundation

University of Wisconsin-Madison

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference33 articles.

1. A computed example of non-uniqueness of mean curvature flow in ${\mathbb{R}}^3$;Angenent,1995

2. An integer degree for the space of asymptotically conical self-expanders of mean curvature flow;Bernstein

3. The space of asymptotically conical self-expanders of mean curvature flow;Bernstein

4. Lecture Notes in Mathematics;Cerf,1968

5. La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie;Cerf;Inst. Hautes Études Sci. Publ. Math.,1970

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A rigidity theorem for self-expanders;manuscripta mathematica;2024-06-03

2. Mean curvature flow with generic initial data;Inventiones mathematicae;2024-04-23

3. Mean Convex Smoothing of Mean Convex Cones;Geometric and Functional Analysis;2024-02

4. An integer degree for asymptotically conical self-expanders;Calculus of Variations and Partial Differential Equations;2023-07-22

5. Convexity of 2-Convex Translating and Expanding Solitons to the Mean Curvature Flow in $${{\mathbb {R}}}^{n+1}$$;The Journal of Geometric Analysis;2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3