Relative Quasimaps and Mirror Formulae

Author:

Battistella Luca1,Nabijou Navid2

Affiliation:

1. Mathematisches Institut, Ruprecht-Karls-Universität Heidelberg

2. School of Mathematics and Statistics, University of Glasgow

Abstract

Abstract We construct and study the theory of relative quasimaps in genus zero, in the spirit of Gathmann. When $X$ is a smooth toric variety and $Y$ is a smooth very ample hypersurface in $X$, we produce a virtual class on the moduli space of relative quasimaps to $(X,Y)$, which we use to define relative quasimap invariants. We obtain a recursion formula which expresses each relative invariant in terms of invariants of lower tangency, and apply this formula to derive a quantum Lefschetz theorem for quasimaps, expressing the restricted quasimap invariants of $Y$ in terms of those of $X$. Finally, we show that the relative $I$-function of Fan–Tseng–You coincides with a natural generating function for relative quasimap invariants, providing mirror-symmetric motivation for the theory.

Funder

Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference34 articles.

1. Relative and orbifold Gromov–Witten invariants;Abramovich;Algebr. Geom.,2017

2. Stable logarithmic maps to Deligne–Faltings pairs II;Abramovich;Asian J. Math.,2014

3. Another way to enumerate rational curves with torus actions;Bertram;Invent. Math.,2000

4. Stable logarithmic maps to Deligne–Faltings pairs I;Chen;Ann. of Math. (2),2014

5. Moduli stacks of stable toric quasimaps;Ciocan-Fontanine;Adv. Math.,2010

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Lefschetz Without Curves;International Mathematics Research Notices;2024-07-16

2. Logarithmic quasimaps;Advances in Mathematics;2024-02

3. Logarithmic Donaldson–Thomas theory;Forum of Mathematics, Pi;2024

4. THE LOCAL-ORBIFOLD CORRESPONDENCE FOR SIMPLE NORMAL CROSSING PAIRS;Journal of the Institute of Mathematics of Jussieu;2022-03-25

5. Curve counting in genus one: Elliptic singularities and relative geometry;Algebraic Geometry;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3