Exponential-Square Integrability, Weighted Inequalities for the Square Functions Associated to Operators, and Applications

Author:

Chen Peng1,Duong Xuan Thinh2,Wu Liangchuan1,Yan Lixin1

Affiliation:

1. Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China

2. Department of Mathematics, Macquarie University, Sydney, New South Wales 2109, Australia

Abstract

Abstract Let $X$ be a metric space with a doubling measure. Let $L$ be a nonnegative self-adjoint operator acting on $L^2(X)$, hence $L$ generates an analytic semigroup $e^{-tL}$. Assume that the kernels $p_t(x,y)$ of $e^{-tL}$ satisfy Gaussian upper bounds and Hölder continuity in $x$, but we do not require the semigroup to satisfy the preservation condition $e^{-tL}1 = 1$. In this article we aim to establish the exponential-square integrability of a function whose square function associated to an operator $L$ is bounded, and the proof is new even for the Laplace operator on the Euclidean spaces ${\mathbb R^n}$. We then apply this result to obtain: (1) estimates of the norm on $L^p$ as $p$ becomes large for operators such as the square functions or spectral multipliers; (2) weighted norm inequalities for the square functions; and (3) eigenvalue estimates for Schrödinger operators on ${\mathbb R}^n$ or Lipschitz domains of ${\mathbb R}^n$.

Funder

National Natural Science Foundation

Guangdong Natural Science Foundation

Fundamental Research Funds for the Central Universities

Australian Research Council Discovery

Postdoctoral Science Foundation of China

NNSF of China

Guangdong Special Support Program

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference49 articles.

1. On necessary and sufficient conditions for ${L}^p$-estimates of Riesz transforms associated to elliptic operators on ${\mathbb{R}}^n$ and related estimates;Auscher;Mem. Amer. Math. Soc.,2007

2. Riesz transform on manifolds and heat kernel regularity;Auscher;Ann. Sci. École Norm. Sup.,2004

3. Orthonormal bases of regular wavelets in spaces of homogeneous type;Auscher;Appl. Comput. Harmon. Anal.,2013

4. Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: general operator theory and weights;Auscher;Adv. Math.,2007

5. Hardy spaces and divergence operators on strongly Lipschitz domain of ${\mathbb{R}}^n$;Auscher;J. Funct. Anal.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3