Antisymmetric Paramodular Forms of Weights 2 and 3

Author:

Gritsenko Valery123,Poor Cris4,Yuen David S5

Affiliation:

1. Université Lille, Laboratoire Paul Painlevé, Rue Paul Duez, Lille, France

2. Institut Universitaire de France, Rue Descartes, Paris, France

3. National Research University Higher School of Economics, Moscow, Russia

4. Department of Mathematics, Fordham University, Bronx, NY, USA

5. Department of Mathematics, University of Hawaii, McCarthy Mall, Honolulu, HI, USA

Abstract

Abstract We define an algebraic set in $23$-dimensional projective space whose ${{\mathbb{Q}}}$-rational points correspond to meromorphic, antisymmetric, paramodular Borcherds products. We know two lines inside this algebraic set. Some rational points on these lines give holomorphic Borcherds products and thus construct examples of Siegel modular forms on degree 2 paramodular groups. Weight $3$ examples provide antisymmetric canonical differential forms on Siegel modular three-folds. Weight $2$ is the minimal weight and these examples, via the paramodular conjecture, give evidence for the modularity of some rank 1 abelian surfaces defined over $\mathbb{Q}$.

Funder

Laboratory of Mirror Symmetry NRU HSE

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference22 articles.

1. Cohomology of congruence subgroups of $\mathrm{SL}\left (4,\mathbb{Z}\right )$. III;Ash;Math. Comp.,2010

2. Automorphic forms with singularities on Grassmannians;Borcherds;Invent. Math.,1998

3. Computations of spaces of paramodular forms of general level;Breeding II;J. Korean Math. Soc.,2016

4. Paramodular abelian surfaces of odd conductor;Brumer;Trans. Amer. Math. Soc.,2014

5. Paramodular abelian varieties of odd conductor;Brumer,2018

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stable Klingen Vectors and Paramodular Newforms;Lecture Notes in Mathematics;2023

2. Hecke Eigenvalues and Fourier Coefficients;Stable Klingen Vectors and Paramodular Newforms;2023

3. Operators on Siegel Modular Forms;Stable Klingen Vectors and Paramodular Newforms;2023

4. Introduction;Stable Klingen Vectors and Paramodular Newforms;2023

5. Finding all Borcherds product paramodular cusp forms of a given weight and level;Mathematics of Computation;2020-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3