On the Dynamics of Zero-Speed Solutions for Camassa–Holm-Type Equations

Author:

Alejo Miguel A1,Cortez Manuel Fernando2,Kwak Chulkwang34,Muñoz Claudio5

Affiliation:

1. Departamento de Matemática, Universidade Federal de Santa Catarina, Campus Universitario Trindade Florianópolis-Santa Catarina, Brasil

2. Facultad de Ciencias, Departamento de Matemática, Escuela Politécnica Nacional del Ecuador, Ladrón de Guevara, Quito, Ecuador

3. Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Campus San Joaquín, Av. Vicuña Mackenna, Santiago, Chile

4. Institute of Pure and Applied Mathematics, Chonbuk National University, South Korea

5. Departamento de Ingeniería Matemática DIM and CMM UMI 2807-CNRS, Universidad de Chile, Beauchef, Torre Norte, Santiago, Chile

Abstract

Abstract In this paper, we consider globally defined solutions of Camassa–Holm (CH)-type equations outside the well-known nonzero-speed, peakon region. These equations include the standard CH and Degasperis–Procesi (DP) equations, as well as nonintegrable generalizations such as the $b$-family, elastic rod, and Benjamin-Bona-Mahony (BBM) equations. Having globally defined solutions for these models, we introduce the notion of zero-speed and breather solutions, i.e., solutions that do not decay to zero as $t\to +\infty $ on compact intervals of space. We prove that, under suitable decay assumptions, such solutions do not exist because the identically zero solution is the global attractor of the dynamics, at least in a spatial interval of size $|x|\lesssim t^{1/2-}$ as $t\to +\infty $. As a consequence, we also show scattering and decay in CH-type equations with long-range nonlinearities. Our proof relies in the introduction of suitable virial functionals à la Martel–Merle in the spirit of the works of [74, 75] and [50] adapted to CH-, DP-, and BBM-type dynamics, one of them placed in $L^1_x$ and the 2nd one in the energy space $H^1_x$. Both functionals combined lead to local-in-space decay to zero in $|x|\lesssim t^{1/2-}$ as $t\to +\infty $. Our methods do not rely on the integrable character of the equation, applying to other nonintegrable families of CH-type equations as well.

Funder

CNPq

FONDECYT

CONICYT

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic stability manifolds for solitons in the generalized Good Boussinesq equation;Journal de Mathématiques Pures et Appliquées;2023-09

2. Formation of singularity of solution to a nonlinear shallow water equation;Journal of Inequalities and Applications;2023-03-01

3. Decay for Skyrme wave maps;Letters in Mathematical Physics;2022-09-10

4. Global Solutions and Stability Properties of the 5th Order Gardner Equation;Journal of Dynamics and Differential Equations;2021-06-17

5. On local energy decay for large solutions of the Zakharov-Kuznetsov equation;Communications in Partial Differential Equations;2021-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3