Energy Minimizing Beltrami Fields on Sasakian 3-Manifolds

Author:

Peralta-Salas Daniel1,Slobodeanu Radu2

Affiliation:

1. Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain

2. Faculty of Physics, University of Bucharest, P.O. Box Mg, Bucharest-Măgurele RO, Romania

Abstract

Abstract We study on which compact Sasakian 3-manifolds the Reeb field, which is a Beltrami field with eigenvalue $2$, is an energy minimizer in its adjoint orbit under the action of volume-preserving diffeomorphisms. This minimization property for Beltrami fields is relevant because of its connections with the phenomenon of magnetic relaxation and the hydrodynamic stability of steady Euler flows. We characterize the Sasakian manifolds where the Reeb field is a minimizer in terms of the 1st positive eigenvalue of the curl operator and show that for $a>a_0$ (a constant that depends on the Sasakian structure) the Reeb field of the $\mathcal{D}$-homothetic deformation of the manifold with constant $a$ (which is still Sasakian) is an unstable critical point of the energy and hence not even a local minimizer. We also provide some examples of Sasakian manifolds where the Reeb field is a minimizer, highlighting the case of the weighted 3-spheres, on which another minimization problem (for the quartic Skyrme–Faddeev energy) is shown to admit exact solutions.

Funder

European Research Council

Instituto de Ciencias Matematicas–Severo Ochoa

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference45 articles.

1. Kähler metrics on toric orbifolds;Abreu;J. Differential Geom.,2001

2. The ${S}^1$-equivariant Yamabe invariant of 3-manifolds;Ammann;Int. Math. Res. Not. IMRN,2016

3. Topological Methods in Hydrodynamics

4. On the imbedding of $V$-manifolds in projective space;Baily;Amer. J. Math.,1957

5. Harmonic Morphisms Between Riemannian Manifolds

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3