Affiliation:
1. Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
Abstract
Abstract
Let $A$ be the path algebra of a Dynkin quiver over a finite field, and let $C_1(\mathscr{P})$ be the category of 1-cyclic complexes of projective $A$-modules. In the present paper, we give a PBW-basis and a minimal set of generators for the Hall algebra ${\mathcal{H}}\,(C_1(\mathscr{P}))$ of $C_1(\mathscr{P})$. Using this PBW-basis, we firstly prove the degenerate Hall algebra of $C_1(\mathscr{P})$ is the universal enveloping algebra of the Lie algebra spanned by all indecomposable objects. Secondly, we calculate the relations among the generators in ${\mathcal{H}}\,(C_1(\mathscr{P}))$, and obtain quantum Serre relations in a quotient of certain twisted version of ${\mathcal{H}}\,(C_1(\mathscr{P}))$. Moreover, we establish relations between the degenerate Hall algebra, twisted Hall algebra of $A$ and those of $C_1(\mathscr{P})$, respectively.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province of China
Natural Science Foundation of Jiangsu Higher Education Institutions of China
Publisher
Oxford University Press (OUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献