Spectrality of Polytopes and Equidecomposability by Translations

Author:

Lev Nir1,Liu Bochen2

Affiliation:

1. Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel

2. Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Abstract

Abstract Let $A$ be a polytope in ${\mathbb{R}}^d$ (not necessarily convex or connected). We say that $A$ is spectral if the space $L^2(A)$ has an orthogonal basis consisting of exponential functions. A result due to Kolountzakis and Papadimitrakis (2002) asserts that if $A$ is a spectral polytope, then the total area of the $(d-1)$-dimensional faces of $A$ on which the outward normal is pointing at a given direction, must coincide with the total area of those $(d-1)$-dimensional faces on which the outward normal is pointing at the opposite direction. In this paper, we prove an extension of this result to faces of all dimensions between $1$ and $d-1$. As a consequence we obtain that any spectral polytope $A$ can be dissected into a finite number of smaller polytopes, which can be rearranged using translations to form a cube.

Funder

Israel Science Foundation

European Research Council

Hong kong Research Grant Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral sets and weak tiling;Sampling Theory, Signal Processing, and Data Analysis;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3