Convergence of the Weak Kähler–Ricci Flow on Manifolds of General Type

Author:

Tô Tat Dat1

Affiliation:

1. Ecole Nationale de l’Aviation Civile, Unversité de Toulouse, 7, Avenue Edouard Belin, FR-31055 Toulouse Cedex and Institut Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, 31062 Toulouse cedex 09, France

Abstract

Abstract We study the Kähler–Ricci flow on compact Kähler manifolds whose canonical bundle is big. We show that the normalized Kähler–Ricci flow has long-time existence in the viscosity sense, is continuous in a Zariski open set, and converges to the unique singular Kähler–Einstein metric in the canonical class. The key ingredient is a viscosity theory for degenerate complex Monge–Ampère flows in big classes that we develop, extending and refining the approach of Eyssidieux–Guedj–Zeriahi.

Funder

ANR GRACK

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference37 articles.

1. The Dirichlet problem for a complex Monge–Ampère equation;Bedford;Invent. Math.,1976

2. A new capacity for plurisubharmonic functions;Bedford;Acta Mathematica,1982

3. Regularity of plurisubharmonic upper envelopes in big cohomology classes;Berman,2012

4. Divisorial Zariski decompositions on compact complex manifolds;Boucksom;Ann. Sci. ENS (4),2004

5. Monge–Ampère equations in big cohomology classes;Boucksom;Acta Math.,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pluripotential Monge-Ampère flows in big cohomology classes;Journal of Functional Analysis;2022-03

2. A Comparison Principle for Parabolic Complex Monge–Ampère Equations;The Journal of Geometric Analysis;2021-12-02

3. Viscosity solutions to parabolic complex Monge–Ampère equations;Calculus of Variations and Partial Differential Equations;2020-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3