A Bilinear Rubio de Francia Inequality for Arbitrary Rectangles

Author:

Bernicot Frédéric1,Vitturi Marco2

Affiliation:

1. Centre National de la Recherche Scientifique, Université de Nantes, Laboratoire Jean Leray 2, rue de la Houssinière, 44322 Nantes Cedex 3, France

2. School of Mathematical Sciences, University College Cork, Western Gateway Building, Western Road, Cork, Ireland

Abstract

Abstract Let $\mathscr{R}$ be a collection of disjoint dyadic rectangles $R$, let $\pi _R$ denote the non-smooth bilinear projection onto $R$ and let $r>2$. We show that the bilinear Rubio de Francia operator associated with $\mathscr{R}$ given by $$\begin{equation*} f,g \mapsto \left(\sum_{R\in\mathscr{R}} |\pi_{R} (f,g)|^r \right)^{1/r} \end{equation*}$$ is $L^p \times L^q \rightarrow L^s$ bounded whenever $1/p + 1/q = 1/s$, $r^{\prime}<p,q<r$. This extends from squares to rectangles a previous result by the same authors in [7], and as a corollary extends in the same way a previous result from [2] for smooth projections, albeit in a reduced range.

Funder

ERC

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference23 articles.

1. Vector-valued extensions for singular bilinear operators and applications;Benea,2015

2. A bilinear Rubio de Francia inequality for arbitrary squares;Benea,2016

3. Rubio de Francia theorems revisited: linear and bilinear case;Benea,2017

4. Multiple vector-valued inequalities via the helicoidal method;Benea;Anal. PDE,2016

5. $L^p$ estimates for non-smooth bilinear Littlewood–Paley square functions on $\mathbb{R}$;Bernicot;Math. Ann.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3