Analytic Extensions of Representations of *-Subsemigroups Without Polar Decomposition

Author:

Oeh Daniel1

Affiliation:

1. Department Mathematik, Friedrich–Alexander–Universität Erlangen–Nürnberg, Cauerstr. 11, D-91058 Erlangen, Germany

Abstract

Abstract Let $(G,\tau )$ be a finite-dimensional Lie group with an involutive automorphism $\tau $ of $G$ and let ${{\mathfrak {g}}} = {{\mathfrak {h}}} \oplus {{\mathfrak {q}}}$ be its corresponding Lie algebra decomposition. We show that every nondegenerate strongly continuous representation on a complex Hilbert space ${\mathcal {H}}$ of an open $^\ast $-subsemigroup $S \subset G$, where $s^{\ast } = \tau (s)^{-1}$, has an analytic extension to a strongly continuous unitary representation of the 1-connected Lie group $G_1^c$ with Lie algebra $[{{\mathfrak {q}}},{{\mathfrak {q}}}] \oplus i{{\mathfrak {q}}}$. We further examine the minimal conditions under which an analytic extension to the 1-connected Lie group $G^c$ with Lie algebra ${{\mathfrak {h}}} \oplus i{{\mathfrak {q}}}$ exists. This result generalizes the Lüscher–Mack theorem and the extensions of the Lüscher–Mack theorem for $^\ast $-subsemigroups satisfying $S = S(G^\tau )_0$ by Merigon, Neeb, and Ólafsson. Finally, we prove that nondegenerate strongly continuous representations of certain $^\ast $-subsemigroups $S$ can even be extended to representations of a generalized version of an Olshanski semigroup.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference24 articles.

1. Unbounded, symmetric semigroups on a separable Hilbert space are essentially selfadjoint;Fröhlich;Adv. Appl. Math.,1980

2. Lecture Notes in Mathematics 1552;Hilgert,1993

3. Springer Monographs in Mathematics;Hilgert,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nets of standard subspaces on Lie groups;Advances in Mathematics;2021-06

2. Finite dimensional semigroups of unitary endomorphisms of standard subspaces;Representation Theory of the American Mathematical Society;2021-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3