Quantum Teleportation and Super-Dense Coding in Operator Algebras

Author:

Gao Li12,Harris Samuel J3,Junge Marius1

Affiliation:

1. Department of Mathematics, University of Illinois, Urbana, IL, USA

2. Department of Mathematics, Texas A&M University, College Station, USA

3. Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

Abstract We show for any $d,m\ge 2$ with $(d,m)\neq (2,2)$, the matrix-valued generalization of the (tensor product) quantum correlation set of $d$ inputs and $m$ outputs is not closed. Our argument uses a reformulation of super-dense coding and teleportation in terms of $C^*$-algebra isomorphisms. Namely, we prove that for certain actions of cyclic group ${{\mathbb{Z}}}_d$, $$\begin{equation*}M_d(C^*({{\mathbb{F}}}_{d^2}))\cong{{\mathcal{B}}}_d\rtimes{{\mathbb{Z}}}_d\rtimes{{\mathbb{Z}}}_d , M_d({{\mathcal{B}}}_d)\cong C^*({{\mathbb{F}}}_{d^2})\rtimes{{\mathbb{Z}}}_d\rtimes{{\mathbb{Z}}}_d,\end{equation*}$$where ${{\mathcal{B}}}_d$ is the universal unital $C^*$-algebra generated by the elements $u_{jk}, \, 0 \le i, j \le d-1$, satisfying the relations that $[u_{j,k}]$ is a unitary operator, and $C^*({{\mathbb{F}}}_{d^2})$ is the universal $C^*$-algebra of $d^2$ unitaries. These isomorphisms provide a nice connection between the embezzlement of entanglement and the non-closedness of quantum correlation sets.

Funder

Illinois University Fellowship

Trjitzinsky Fellowship

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference30 articles.

1. The mother of all protocols: restructuring quantum information’s family tree;Abeyesinghe;Proc. R. Soc. London A,2009

2. On the einstein podolsky rosen paradox;Bell,1964

3. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states;Bennett;Phys. Rev. Lett.,1992

4. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels;Bennett;Phys. Rev. Lett.,1993

5. Ext of certain free product C*-algebras;Brown,1981

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum No-signalling Correlations and Non-local Games;Communications in Mathematical Physics;2024-05-28

2. On the relation between completely bounded and (1,cb)-summing maps with applications to quantum XOR games;Journal of Functional Analysis;2022-12

3. The quantum-to-classical graph homomorphism game;Journal of Mathematical Physics;2022-11-01

4. Quantum Cuntz-Krieger algebras;Transactions of the American Mathematical Society, Series B;2022-10-11

5. Bipartite Matrix-Valued Tensor Product Correlations That are Not Finitely Representable;Communications in Mathematical Physics;2021-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3