On the Theory of Higher Rank Euler, Kolyvagin and Stark Systems

Author:

Burns David1,Sano Takamichi2

Affiliation:

1. King’s College London, Department of Mathematics, London WC2R 2LS, UK

2. Osaka City University, Department of Mathematics, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

Abstract

Abstract Mazur and Rubin have recently developed a theory of higher rank Kolyvagin and Stark systems over principal artinian rings and discrete valuation rings. We describe a natural extension of (a slightly modified version of) their theory to systems over more general coefficient rings. We also construct unconditionally, and for general $p$-adic representations, a canonical, and typically large, module of higher rank Euler systems and show that for $p$-adic representations satisfying standard hypotheses the image under a natural higher rank Kolyvagin-derivative-type homomorphism of each such system is a higher rank Kolyvagin system that originates from a Stark system.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference27 articles.

1. On the ubiquity of Gorenstein rings;Bass;Math. Z.,1963

2. Graduate Texts in Math;Brown,1982

3. Tamagawa numbers for motives with (non-commutative) coefficients;Burns;Doc. Math.,2001

4. On zeta elements for ${\mathbb{G}}_m$;Burns;Doc. Math,2016

5. On Stark elements of arbitrary weight and their $p$-adic families;Burns

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On derivatives of Kato's Euler system for elliptic curves;Journal of the Mathematical Society of Japan;2024-07-25

2. The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields;Documenta Mathematica;2023-08-16

3. On -adic families of special elements for rank-one motives;Transactions of the American Mathematical Society;2023-05-19

4. A higher rank Euler system for Gm over a totally real field;American Journal of Mathematics;2023-02

5. On the Brumer--Stark conjecture;Annals of Mathematics;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3