Tropicalized Quartics and Canonical Embeddings for Tropical Curves of Genus 3

Author:

Hahn Marvin Anas1,Markwig Hannah2,Ren Yue3,Tyomkin Ilya4

Affiliation:

1. Department of Mathematics, Johann Wolfgang Goethe Universität Frankfurt am Main, Robert-Mayer Str. 6-8, 60325 Frankfurt am Main, Germany

2. Department of Mathematics, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10(C), 72076 Tübingen, Germany

3. Max-Planck-Institut MIS, Inselstraße 22, 04103 Leipzig, Germany

4. Department of Mathematics, Ben-Gurion University of the Negev, Beer Sheva, Israel

Abstract

Abstract In [8], it was shown that not all abstract non-hyperelliptic tropical curves of genus $3$ can be realized as a tropicalization of a quartic in $\mathbb R^2$. In this paper, we focus on the interior of the maximal cones in the moduli space and classify all curves, which can be realized as a faithful tropicalization in a tropical plane. Reflecting the algebro-geometric world, we show that these are all curves but the tropicalizations of realizably hyperelliptic algebraic curves. Our approach is constructive: for a curve that is not the tropicalization of a hyperelliptic algebraic curve, we explicitly construct a realizable model of the tropical plane in $\mathbb{R}^n$ and a faithfully tropicalized quartic in it. These constructions rely on modifications resp. tropical refinements. Conversely, we prove that the tropicalizations of hyperelliptic algebraic curves cannot be embedded in such a fashion. For that, we rely on the theory of tropical divisors and embeddings from linear systems [3, 21] and recent advances in the realizability of sections of the tropical canonical divisor [30].

Funder

Deutsche Forschungsgemeinschaft

Israel Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference34 articles.

1. The tropicalization of the moduli space of curves;Abramovich;Ann. Sci. Éc. Norm. Supér. (4),2015

2. First steps in tropical intersection theory;Allermann;Math. Z.,2010

3. Reduced divisors and embeddings of tropical curves;Amini;Trans. Amer. Math. Soc.,2013

4. Lifting harmonic morphisms II: tropical curves and metrized complexes;Amini;Algebra Number Theory,2015

5. Specialization of linear systems from curves to graphs;Baker;Algebra Number Theory,2008

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tropical graph curves;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2024-04-01

2. Combinatorics and Real Lifts of Bitangents to Tropical Quartic Curves;Discrete & Computational Geometry;2023-02-14

3. Smooth tropical complete intersection curves of genus 3 in $$\mathbb {R}^3$$;Collectanea Mathematica;2022-08-27

4. Tropically planar graphs;Collectanea Mathematica;2021-10-07

5. Forbidden patterns in tropical plane curves;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2020-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3