The Image Size of Iterated Rational Maps over Finite Fields

Author:

Juul Jamie1

Affiliation:

1. Mathematics Department, University of British Columbia, Vancouver, BC, Canada V6T 1Z2

Abstract

Abstract Let $\varphi : {{\mathbb{P}}}^1( {{\mathbb{F}}}_q)\to{{\mathbb{P}}}^1( {{\mathbb{F}}}_q)$ be a rational map of degree $d>1$ on a fixed finite field. We give asymptotic formulas for the size of image sets $\varphi ^n( {{\mathbb{P}}}^1( {{\mathbb{F}}}_q))$ as a function of $n$. This is done using properties of Galois groups of iterated maps, whose connection to the size of image sets is established via the Chebotarev Density Theorem. We apply our results in the following setting. For a rational map defined over a number field, consider the reduction of the map modulo each prime of the number field. We use our results to give explicit bounds on the proportion of periodic points in the residue fields.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference25 articles.

1. A large arboreal Galois representation for a cubic postcritically finite polynomial;Benedetto;Res. Number Theory,2017

2. Note on a problem of Chowla;Birch;Acta Arith.,1959

3. New Mathematical Monographs;Bombieri,2006

4. The proportion of fixed-point-free elements of a transitive permutation group;Boston;Comm. Algebra,1993

5. The Riemann zeta and allied functions;Chowla;Bull. Amer. Math. Soc.,1952

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preperiodic points of polynomial dynamical systems over finite fields;International Journal of Number Theory;2024-06-25

2. Backward orbits of critical points;Journal of Number Theory;2024-03

3. Iterated monodromy groups of rational functions and periodic points over finite fields;Mathematische Annalen;2023-12-07

4. Functional graphs of families of quadratic polynomials;Mathematics of Computation;2023-04-04

5. Periodic points of polynomials over finite fields;Transactions of the American Mathematical Society;2022-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3