Finite Symmetric Integral Tensor Categories with the Chevalley Property with an Appendix by Kevin Coulembier and Pavel Etingof

Author:

Etingof Pavel1,Gelaki Shlomo2

Affiliation:

1. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

2. Department of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel

Abstract

Abstract We prove that every finite symmetric integral tensor category $\mathcal{C}$ with the Chevalley property over an algebraically closed field $k$ of characteristic $p>2$ admits a symmetric fiber functor to the category of supervector spaces. This proves Ostrik’s conjecture [25, Conjecture 1.3] in this case. Equivalently, we prove that there exists a unique finite supergroup scheme $\mathcal{G}$ over $k$ and a grouplike element $\epsilon \in k\mathcal{G}$ of order $\le 2$, whose action by conjugation on $\mathcal{G}$ coincides with the parity automorphism of $\mathcal{G}$, such that $\mathcal{C}$ is symmetric tensor equivalent to $\textrm{Rep}(\mathcal{G},\epsilon )$. In particular, when $\mathcal{C}$ is unipotent, the functor lands in $\textrm{Vec}$, so $\mathcal{C}$ is symmetric tensor equivalent to $\textrm{Rep}(U)$ for a unique finite unipotent group scheme $U$ over $k$. We apply our result and the results of [17] to classify certain finite dimensional triangular Hopf algebras with the Chevalley property over $k$ (e.g., local), in group scheme-theoretical terms. Finally, we compute the Sweedler cohomology of restricted enveloping algebras over an algebraically closed field $k$ of characteristic $p>0$, classify associators for their duals, and study finite dimensional (not necessarily triangular) local quasi-Hopf algebras and finite (not necessarily symmetric) unipotent tensor categories over an algebraically closed field $k$ of characteristic $p>0$. The appendix by K. Coulembier and P. Etingof gives another proof of the above classification results using the recent paper [4], and more generally, shows that the maximal Tannakian and super-Tannakian subcategory of a symmetric tensor category over a field of characteristic $\ne 2$ is always a Serre subcategory.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference34 articles.

1. Hopf Algebras. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka;Abe,1980

2. Triangular Hopf algebras with the Chevalley property;Andruskiewitsch,2001

3. “On tensor categories attached to cells in affine Weyl groups. Representation theory of algebraic groups and quantum groups;Bezrukavnikov;Adv. Stud. Pure Math.,2004

4. Quasi-Hopf algebras. (Russian) Algebra i Analiz1 (1989), no. 6, 114–148; translation in Leningrad;Drinfeld;Math. J.,1990

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incompressible tensor categories;Advances in Mathematics;2024-11

2. Exact factorizations and extensions of finite tensor categories;Journal of Algebra;2023-10

3. Minimal extensions of Tannakian categories in positive characteristic;Journal of Algebra;2022-08

4. Module categories over affine supergroup schemes;Journal of Pure and Applied Algebra;2021-11

5. Monoidal abelian envelopes;Compositio Mathematica;2021-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3