Quantum-Classical Correspondence on Associated Vector Bundles Over Locally Symmetric Spaces

Author:

Küster Benjamin1,Weich Tobias2

Affiliation:

1. Fachbereich 12 Mathematik und Informatik, Philipps-Universität Marburg, Marburg, Germany

2. Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn, Paderborn, Germany

Abstract

Abstract For a compact Riemannian locally symmetric space $\mathcal M$ of rank 1 and an associated vector bundle $\mathbf V_{\tau }$ over the unit cosphere bundle $S^{\ast }\mathcal M$, we give a precise description of those classical (Pollicott–Ruelle) resonant states on $\mathbf V_{\tau }$ that vanish under covariant derivatives in the Anosov-unstable directions of the chaotic geodesic flow on $S^{\ast }\mathcal M$. In particular, we show that they are isomorphically mapped by natural pushforwards into generalized common eigenspaces of the algebra of invariant differential operators $D(G,\sigma )$ on compatible associated vector bundles $\mathbf W_{\sigma }$ over $\mathcal M$. As a consequence of this description, we obtain an exact band structure of the Pollicott–Ruelle spectrum. Further, under some mild assumptions on the representations $\tau$ and $\sigma$ defining the bundles $\mathbf V_{\tau }$ and $\mathbf W_{\sigma }$, we obtain a very explicit description of the generalized common eigenspaces. This allows us to relate classical Pollicott–Ruelle resonances to quantum eigenvalues of a Laplacian in a suitable Hilbert space of sections of $\mathbf W_{\sigma }$. Our methods of proof are based on representation theory and Lie theory.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference41 articles.

1. Smooth Anosov flows: correlation spectra and stability;Butterley;J. Mod. Dyn.,2007

2. The spectrum of Kleinian manifolds;Bunke;J. Funct. Anal.,2000

3. Chapters 7–9, Elements of Mathematics;Bourbaki,2004

4. Spectre du Laplacien et longueurs des géodésiques périodiques I;Colin de Verdière;Compositio Math.,1973

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral correspondences for finite graphs without dead ends;Indagationes Mathematicae;2024-05

2. Higher rank quantum-classical correspondence;Analysis & PDE;2023-12-11

3. Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters;Journal de l’École polytechnique — Mathématiques;2023-02-22

4. Poisson transforms for trees of bounded degree;Journal of Spectral Theory;2022-09-21

5. Semiclassical formulae for Wigner distributions;Journal of Physics A: Mathematical and Theoretical;2022-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3