Pattern Equivariant Mass Transport in Aperiodic Tilings and Cohomology

Author:

Kelly Michael1,Sadun Lorenzo2

Affiliation:

1. Center for Communications Research, Princeton, NJ 08540, USA

2. Lorenzo Sadun, Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA

Abstract

Abstract Suppose that we have a repetitive and aperiodic tiling ${\textbf{T}}$ of ${\mathbb{R}}^n$ and two mass distributions $f_1$ and $f_2$ on ${\mathbb{R}}^n$, each pattern equivariant (PE) with respect to ${\textbf{T}}$. Under what circumstances is it possible to do a bounded transport from $f_1$ to $f_2$? When is it possible to do this transport in a strongly or weakly PE way? We reduce these questions to properties of the Čech cohomology of the hull of ${\textbf{T}}$, properties that in most common examples are already well understood.

Funder

NSF

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference44 articles.

1. Open problems and conjectures related to the theory of mathematical quasicrystals;Adiceam;Arnold Math. J.,2016

2. Rapid convergence to frequency for substitution tilings of the plane;Aliste-Prieto;Comm. Math. Phys.,2011

3. Linearly repetitive Delone sets are rectifiable;Aliste-Prieto;Annales de l’Institut Henri Poincaré. Analyse Non Linéaire,2013

4. Topological invariants for substitution tilings and their associated ${C}^{\ast } $-algebras;Anderson;Ergodic Theory Dynam. Systems,1998

5. Cohomology in one-dimensional substitution tiling spaces;Barge;Proceedings of the AMS,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A dichotomy for bounded displacement equivalence of Delone sets;Ergodic Theory and Dynamical Systems;2021-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3