Affiliation:
1. Eidgenössische Technische Hochschule Zürich, Rämistrasse 101 8092, Zurich, Switzerland
Abstract
Abstract
Let $f\in \mathbb{Z}[T]$ be any polynomial of degree $d>1$ and $F\in \mathbb{Z}[X_{0},...,X_{n}]$ an irreducible homogeneous polynomial of degree $e>1$ such that the projective hypersurface $V(F)$ is smooth. In this paper we present a new bound for $N(f,F,B):=|\{\textbf{x}\in \mathbb{Z}^{n+1}:\max _{0\leq i\leq n}|x_{i}|\leq B,\exists t\in \mathbb{Z}\textrm{ such that}\ f(t)=F(\textbf{x})\}|.$ To do this, we introduce a generalization of the power sieve [ 14, 28] and we extend two results by Deligne and Katz on estimates for additive and multiplicative characters in many variables.
Publisher
Oxford University Press (OUP)
Reference32 articles.
1. On exponential sums in finite fields. II;Bombieri;Invent. Math.,1978
2. The polynomial sieve and equal sums of like polynomials;Browning;Int. Math. Res. Not. IMRN,2015
3. The Resultant via a Koszul Complex;Chardin,1993
4. The distribution of Galois groups and Hilbert’s irreducibility theorem;Cohen;Proc. London Math. Soc. (3),1981
5. La conjecture de Weil. I;Deligne;Publ. Math. Inst. Hautes Études Sci.,1974
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献