Simplified method for applying static isotropic tensile strain in cell culture experiments with identification of valid RT-qPCR reference genes for PDL fibroblasts

Author:

Nazet Ute1,Schröder Agnes1,Spanier Gerrit2,Wolf Michael3,Proff Peter1,Kirschneck Christian1ORCID

Affiliation:

1. Department of Orthodontics, University Medical Centre of Regensburg, Germany

2. Department of Maxillo-Facial Surgery, University Medical Centre of Regensburg, Germany

3. Department of Orthodontics, RWTH Aachen, Germany

Abstract

Summary Background/objective Periodontal ligament fibroblasts (PDLF) play an important mediating role in orthodontic tooth movement expressing various cytokines, when exposed to compressive or tensile strain. Here, we present a simplified and easy-to-handle, but reliable and valid method for simulating static isotropic tensile strain in vitro using spherical silicone cap stamps. Furthermore, we identify appropriate reference genes for data normalization in real-time quantitative polymerase chain reaction (RT-qPCR) experiments on PDLF subjected to tensile strain. Materials and methods PDLF were cultivated on flexible bioflex membranes and exposed to static isotropic tensile strain of different magnitudes and timeframes. We determined cell number, cytotoxicity, and relative expression of proinflammatory genes cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6). For normalization of RT-qPCR data, we tested the stability and validity of nine candidate reference genes with four mathematical algorithms (geNorm, NormFinder, comparative ΔCq, and BestKeeper) and ranked them based on their calculated expression stability. Results We observed no decrease in cell number or cytotoxic effect at any of the applied magnitudes and timeframes of tensile strain. At 16 per cent and 35 per cent tensile strain for 48 hours, we detected a significant increase in COX-2 and decrease in IL-6 gene expression. Highest stability was found for TBP (TATA-box-binding protein) and PPIB (peptidylprolyl isomerase A) in reference gene validation. According to the geNorm algorithm, both genes in conjunction are sufficient for normalization. In contrast to all other candidate genes tested, gene expression normalization of target gene COX-2 to reference genes EEF1A1, RPL22, and RNA18S5 indicated no significant upregulation of COX-2 expression. Conclusions A strain magnitude of 16 per cent for 48 hours elicited the most distinct cellular response by PDLF subjected to static tensile isotropic strain by the presented method. TBP and PPIB in conjunction proved to be the most appropriate reference genes to normalize target gene expression in RT-qPCR studies on PDLF subjected to tensile strain.

Publisher

Oxford University Press (OUP)

Subject

Orthodontics

Reference53 articles.

1. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt;Meikle;European Journal of Orthodontics,2006

2. Biomarkers of periodontal tissue remodeling during orthodontic tooth movement in mice and men: overview and clinical relevance;d’Apuzzo;The Scientific World Journal,2013

3. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis;Kanzaki;Journal of Bone and Mineral Research,2002

4. Induction of S100A4 in periodontal ligament cells enhances osteoclast formation;Mah;Archives of Oral Biology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3