Affiliation:
1. School of Life Sciences, Huaibei Normal University, Huaibei, People’s Republic of China
2. Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, People’s Republic of China
Abstract
Abstract
Rodents often act as keystone species in communities and play important roles in shaping structures and functions of many ecosystems. Understanding the underlying mechanisms of population fluctuation in rodents is therefore of great interest. Using the data from a 25-year field survey carried out in Inner Mongolia, China, we explored the effects of density dependence, local climatic factors, and a large-scale climatic perturbation (El Niño–Southern Oscillation) on the population dynamics of the striped hamster (Cricetulus barabensis), a rodent widely distributed in northern China. We detected a strong negative density-dependent effect on the population dynamics of C. barabensis. Rainfall had a significant positive effect on population change with a 1-year lag. The pregnancy rate of C. barabensis was negatively affected by the annual mean temperature in the current year, but positively associated with the population density in the current year and the annual Southern Oscillation Index in the previous year. Moving-window analyses suggested that, with a window length of 12 years, there was a significant interaction between rainfall and density dependence, with increasing rainfall alleviating the negative effect of density dependence. As C. barabensis often causes agricultural damage and can transmit zoonotic diseases to human beings, our results also have implications for pest and disease control.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Inner Mongolia
Fundamental Research Funds for Central Nonprofit Research Institutes
Publisher
Oxford University Press (OUP)
Subject
Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献