Pronghorn population genomics show connectivity in the core of their range

Author:

LaCava Melanie E F12ORCID,Gagne Roderick B13ORCID,Stowell Sierra M Love1ORCID,Gustafson Kyle D14ORCID,Buerkle C Alex25ORCID,Knox Lee6,Ernest Holly B12ORCID

Affiliation:

1. Wildlife Genomics and Disease Ecology Laboratory, Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA

2. Program in Ecology, University of Wyoming, Laramie, WY, USA

3. Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA

4. Department of Biology and Environmental Health, Missouri Southern State University, Joplin, MO, USA

5. Department of Botany, University of Wyoming, Laramie, WY, USA

6. Wyoming Game and Fish Department, Laramie, WY, USA

Abstract

AbstractPreserving connectivity in the core of a species’ range is crucial for long-term persistence. However, a combination of ecological characteristics, social behavior, and landscape features can reduce connectivity among wildlife populations and lead to genetic structure. Pronghorn (Antilocapra americana), for example, exhibit fluctuating herd dynamics and variable seasonal migration strategies, but GPS tracking studies show that landscape features such as highways impede their movements, leading to conflicting hypotheses about expected levels of genetic structure. Given that pronghorn populations declined significantly in the early 1900s, have only partially recovered, and are experiencing modern threats from landscape modification, conserving connectivity among populations is important for their long-term persistence in North America. To assess the genetic structure and diversity of pronghorn in the core of their range, we genotyped 4,949 genome-wide single-nucleotide polymorphisms and 11 microsatellites from 398 individuals throughout the state of Wyoming. We found no evidence of genetic subdivision and minimal evidence of isolation by distance despite a range that spans hundreds of kilometers, multiple mountain ranges, and three interstate highways. In addition, a rare variant analysis using putatively recent mutations found no genetic division between pronghorn on either side of a major highway corridor. Although we found no evidence that barriers to daily and seasonal movements of pronghorn impede gene flow, we suggest periodic monitoring of genetic structure and diversity as a part of management strategies to identify changes in connectivity.

Funder

National Institute of General Medical Sciences

University of Wyoming

Publisher

Oxford University Press (OUP)

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3