Evaluating the importance of wolverine habitat predictors using a machine learning method

Author:

Carroll Kathleen A1ORCID,Hansen Andrew J1,Inman Robert M2,Lawrence Rick L3

Affiliation:

1. Ecology Department, Montana State University, P.O. Box 173460, Bozeman, MT 59717-3460, USA

2. Montana Fish, Wildlife and Parks, 1420 E 6th Avenue, Helena, MT 59620, USA

3. Land Resources and Environmental Sciences Department, Montana State University, 334 Leon Johnson Hall, P.O. Box 173120, Bozeman, MT 59717-3120, USA

Abstract

Abstract In the conterminous United States, wolverines (Gulo gulo) occupy semi-isolated patches of subalpine habitats at naturally low densities. Determining how to model wolverine habitat, particularly across multiple scales, can contribute greatly to wolverine conservation efforts. We used the machine-learning algorithm random forest to determine how a novel analysis approach compared to the existing literature for future wolverine conservation efforts. We also determined how well a small suite of variables explained wolverine habitat use patterns at the second- and third-order selection scale by sex. We found that the importance of habitat covariates differed slightly by sex and selection scales. Snow water equivalent, distance to high-elevation talus, and latitude-adjusted elevation were the driving selective forces for wolverines across the Greater Yellowstone Ecosystem at both selection orders but performed better at the second order. Overall, our results indicate that wolverine habitat selection is, in large part, broadly explained by high-elevation structural features, and this confirms existing data. Our results suggest that for third-order analyses, additional fine-scale habitat data are necessary.

Funder

National Fish and Wildlife Foundation

Great Northern Landscape Conservation Cooperative

Montana State University

Publisher

Oxford University Press (OUP)

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3