To go or not to go: variable density-dependent dispersal in small mammals

Author:

Rutherford Kate L1ORCID,Cottenie Karl1,Denomme-Brown Simon T1ORCID

Affiliation:

1. Department of Integrative Biology, University of Guelph , 50 Stone Road East, Guelph, Ontario N1G 2W1 , Canada

Abstract

Abstract Population density has been widely understood to be a key influencer of dispersal behavior; however, the generality of density-dependent (DD) dispersal in vertebrates is unclear. We conducted a review of the available empirical data on small mammal DD dispersal, distinguishing between the three dispersal stages: emigration, immigration, and transience (dispersal distance). We focused on small mammals because they are a well-studied, functionally similar group of vertebrates, with a distinct ecological importance. We also examined the effect of season, body mass, study length, and study type on the strength and direction of DD dispersal. The majority of emigration and dispersal distance studies reported negative density dependence, while immigration was mostly independent of density. No correlative patterns were detected; however, interpretation of the available data was hindered by inconsistencies in experimental and analytical approach across studies. Our results suggest that the three phases of the dispersal process may be influenced differently by density and highlight the importance of distinguishing between emigration, immigration, and transience when considering the effects of density dependence. As well, our study identifies several limitations with the current available data which limit the ability to compare DD dispersal behavior across systems, and calls for future investigations that consider all three phases of dispersal in the same system.

Funder

National Science and Engineering Research Council of Canada’s Discovery

Publisher

Oxford University Press (OUP)

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3