Rocky rule: the idiosyncrasy of spatial and temporal size variation in mammals

Author:

Crandall Kirsten E123ORCID,Olson Link E4ORCID,Millien Virginie12

Affiliation:

1. Redpath Museum, McGill University , 859 Sherbrooke Street West, Montreal, Quebec H3A 0C4 , Canada

2. Department of Biology, McGill University , 1205 Docteur Penfield Avenue, Montreal, Quebec H3A 1B1 , Canada

3. Department of Biology, University of Ottawa , 30 Marie-Curie Private, Ottawa, Ontario K1N 9A7 , Canada

4. University of Alaska Museum , 1962 Yukon Drive, Fairbanks, Alaska 99775 , USA

Abstract

Abstract Mammals are predicted to vary in body size following Bergmann’s rule, with individuals found at higher latitudes in colder temperatures being larger in size compared to conspecifics occurring at lower latitudes in warmer temperatures. Body size is similarly expected to vary temporally, with a decrease in size through time due to recent climate warming. While Bergmann’s rule is well-supported in mammals, there is increasing evidence of exceptions to the rule. Here, we present patterns of size variation in 17 North American mammal species using five morphological traits (condylobasal skull length, skull width, maxillary toothrow length, body weight, and head-and-body length) to determine if size varies predictably for each species in space and time. We found little support for a widespread Bergmannian pattern for these species at a broad spatial scale (across North America) and a contemporary temporal scale (the past 120 years). The effects of latitude or year on each trait were highly variable with three types of responses: an increase, a decrease, or no change in size across space or through time. Spatial size trends were detected more often than temporal size trends, as the temperature range was significantly larger in space than through time. Body weight (the most variable trait) and head-and-body length were more likely to conform to Bergmann’s rule than craniodental measurements. We did not detect any changes in size variability with latitude, and our study species either increased or decreased in size variability over time. Our findings demonstrate that size variation in mammals is highly context-dependent. As such, caution is needed when using rules of body size variation to predict the future response of species to climate warning while valid in theory, it is likely too simplistic of an approach.

Funder

FQRNT master’s training scholarship

McGill University fellowships

Quebec Centre for Biodiversity Science

Jay Pritzker Foundation

Natural Sciences and Engineering Research Council of Canada Discovery Grant

Publisher

Oxford University Press (OUP)

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3