Of pandas, fossils, and bamboo forests: ecological niche modeling of the giant panda (Ailuropoda melanoleuca) during the Last Glacial Maximum

Author:

Luna-Aranguré Carlos12ORCID,Vázquez-Domínguez Ella1ORCID

Affiliation:

1. Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México

2. Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1er Piso, Unidad de Posgrado, Ciudad de México 04510, México

Abstract

Abstract The giant panda (Ailuropoda melanoleuca) is the most basal living species in the phylogeny of the family Ursidae, with a specialized diet composed of a variety of bamboo species. The evolutionary history and past distribution patterns of the giant panda remain poorly understood. Our aim was to integratively apply distinct methods to evaluate the evolutionary history and distributional patterns of the giant panda; these included phylogeography, ecological niche modeling (ENM), and fossil data. To this end, we characterized the panda’s past and present ecological niches and the environmental conditions that define them. To estimate the panda’s phylogeographic patterns and the environmental conditions (precipitation and temperature) available across its historical geographic range, we evaluated its past distribution during the Last Glacial Maximum (LGM). Considering that modeling biotic interactions (e.g., foraging, predation) is still an enormous challenge, we propose a novel modeling strategy based on the panda’s specialized diet, using an ensemble of three bamboo genera with distribution across the panda’s historical geographic range. Finally, we tested the accuracy of our approach by evaluating its ability to predict the LGM fossils. Our results support that the panda’s diversification across its distribution happened ca. 2.7 million years (Mya), coinciding with the likely period when the panda changed from a carnivorous to a vegetarian diet (from the Pleistocene to the Pliocene), acquiring its exclusively bamboo-feeding habits until the mid-Holocene. Our findings provide evidence of a historical directional niche change along which the panda has currently reached the lower limits of temperature and precipitation conditions existing on the geography where its food is available. Our proposed ENM based on the panda’s food habits accurately predicted 85.7% of the LGM fossils, in stark contrast with the traditional approach of modeling the distribution of species by using exclusively its own occurrences. These results provide insights on how to include Eltonian components to undertake more robust ENM when only abiotic variables are available. We emphasize the importance of integrating fossil information, whenever available, into the niche modeling process to include the historical component when estimating species ecological niches.

Funder

Consejo Nacional de Ciencia y Tecnología

Instituto de Ecología, Universidad Nacional Autónoma de México

Publisher

Oxford University Press (OUP)

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3